Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 46(1): 817-840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37171559

ABSTRACT

This work aimed to understand how lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of PCa. Fifty-five male Wistar rats were divided into four groups: control sedentary, control exercised, induced PCa sedentary and induced PCa exercised. Exercised animals were trained in a treadmill for 53 weeks. Pca induction consisted on the sequential administration of flutamide, N-methyl-N-nitrosourea and testosterone propionate implants. Serum concentrations of C-reactive protein (CRP) and tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) were not different among groups. Peripheral levels of γδ T cells were higher in Pca exercised group than in the PCa sedentary group (p < 0.05). Exercise training also induced Oestrogen Receptor (ESR1) upregulation and Mitogen-activated Protein Kinase 13 (MAPK13) downregulation, changed the content of the phosphorylated (at Ser-104) form of this receptor (coded by the gene ESR1) and seemed to increase Erα phosphorylation and activity in exercised PCa rats when compared with sedentary PCa rats. Our data highlight the exercise-induced remodelling of peripheral lymphocyte subpopulations and lymphocyte infiltration in prostate tissue. Moreover, exercise training promotes the remodelling prostate signalome in this rat model of prostate carcinogenesis.


Subject(s)
Physical Conditioning, Animal , Prostate , Rats , Male , Animals , Rats, Sprague-Dawley , Prostate/metabolism , Prostate/pathology , Rats, Wistar , Immune System , Carcinogenesis
2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232916

ABSTRACT

Aging is associated with testicular morphological and functional alterations, but the underlying molecular mechanisms and the impact of physical exercise are poorly understood. In this study, we examined the effects of age and lifelong moderate-intensity exercise on rat testis. Mature adults (35 weeks) and middle-aged (61 weeks) Wistar Unilever male rats were maintained as sedentary or subjected to a lifelong moderate-intensity treadmill training protocol. Testis weight and histology, mitochondrial biogenesis and function, and proteins involved in protein synthesis and stress response were evaluated. Our results illustrate an age-induced testicular atrophy that was associated with alterations in stress response, and mitochondrial biogenesis and function. Aging was associated with increased testicular levels of heat shock protein beta-1 (HSP27) and antioxidant enzymes. Aging was also associated with decreased mRNA abundance of the nuclear respiratory factor 1 (Nrf1), a key transcription factor for mitochondrial biogenesis, which was accompanied by decreased protein levels of the oxidative phosphorylation system (OXPHOS) complexes subunits in the testes of older animals. On the other hand, exercise did not protect against age-induced testicular atrophy and led to deleterious effects on sperm morphology. Exercise led to an even more pronounced decrease in the Nrf1 mRNA levels in testes of both age groups and was associated with decreased mRNA abundance of other mitochondrial biogenesis markers and decreased protein levels of OXPHOS complexes subunits. Lifelong moderate-intensity exercise training was also associated with an increase in testicular oxidative stress markers and possibly with reduced translation. Together, our results indicate that exercise did not protect against age-induced testicular atrophy and was not associated with beneficial changes in mitochondria and stress response, further activating mechanisms of protein synthesis inhibition.


Subject(s)
Age Factors , Physical Conditioning, Animal , Testis , Animals , Antioxidants/metabolism , Atrophy , HSP27 Heat-Shock Proteins , Male , Nuclear Respiratory Factor 1 , Physical Conditioning, Animal/physiology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Semen/metabolism , Testis/physiology , Transcription Factors
3.
Cell Oncol (Dordr) ; 44(2): 311-327, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33074478

ABSTRACT

PURPOSE: Prostate cancer is a major cause of cancer-related death in males worldwide and, in addition to impairing prostate function, also causes testicular adaptations. In this study, we aim to investigate the preventive effect of exercise training on PCa-induced testicular dysfunction. METHODS: As a model, we used fifty Wistar Unilever male rats, randomly divided in four experimental groups. Prostate cancer was chemically and hormonally induced in two groups of animals (PCa groups). One control group and one PCa group was submitted to moderate intensity treadmill exercise training. Fifty weeks after the start of the training the animals were sacrificed and sperm, prostate, testis and serum were collected and analyzed. Sperm concentration and morphology, and testosterone serum levels were determined. In addition, histological analyses of the testes were performed, and testis proteomes and metabolomes were characterized. RESULTS: We found that prostate cancer negatively affected testicular function, manifested as an arrest of spermatogenesis. Oxidative stress-induced DNA damage, arising from reduced testis blood flow, may also contribute to apoptosis of germ cells and consequential spermatogenic impairment. Decreased utilization of the glycolytic pathway, increased metabolism of ketone bodies and the accumulation of branched chain amino acids were also evident in the PCa animals. Conversely, we found that the treadmill training regimen activated DNA repair mechanisms and counteracted several metabolic alterations caused by PCa without impact on oxidative stress. CONCLUSIONS: These findings confirm a negative impact of prostate cancer on testis function and suggest a beneficial role for exercise training in the prevention of prostate cancer-induced testis dysfunction.


Subject(s)
Physical Conditioning, Animal , Prostatic Neoplasms/pathology , Testis/pathology , Animals , Disease Models, Animal , Male , Metabolomics , Models, Biological , Neoplasm Proteins/metabolism , Proteome/metabolism , Proteomics , Rats, Wistar , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...